A FURANOID DITERPENE GLUCOSIDE FROM TINOSPORA CORDIFOLIA

R. K. BHATT and B. K. SABATA*

Chemistry Department, Indian Institute of Technology, Powai, Bombay 400 076, India

(Received in revised form 16 January 1989)

Key Word Index-Tinospora cordifolia; Menispermaceae; novel furanoid; diterpene glucoside.

Abstract—A novel furanoid diterpene glucoside with the molecular formula C₂₆H₃₄O₁₁ was isolated from the stems of *Tinospora cordifolia*. Its complete structure was determined by spectroscopic and chemical studies along with the comparison of the spectral data with the related furanoid diterpene glucosides.

INTRODUCTION

Chemical investigation of *Tinospora cordifolia* has led to the isolation of a phenolic lignan and five diterpenic furano lactones which were reported earlier [1-7]. In the present paper the isolation and structure of a novel furanoid diterpene glucoside, without an angular methyl group at C-5 is reported. The structure (1) was established with the help of high resolution ¹H NMR, spin-decoupling, ¹³C NMR and mass spectral studies of the parent compound, the tetra-acetate and acid hydrolysed product. The structure was further supported by comparing the spectral data with those of related furanoid diterpene glucosides such as borapetoside A (4) [8] borapetoside B (5) [9] and palmatoside A (6) [10].

RESULTS AND DISCUSSION

The hot chloroform extract of the stems of *Tinospora* cordifolia was subjected to column chromatography over silica gel in petrol-ethylacetate (1:1) and (3:7) to yield the two diterpenic furano lactones described in the preceding papers [4, 6]. The column was further eluted with ethyl acetate to provide a sticky mass, which showed a single spot on TLC (R_f 0.29). This was repeatedly crystallized from acetone-ethanol (1:5) to give compound 1 as colourless flakes, mp 199-201°.

The elemental analysis and mass spectral data m/z 343, $[M-(O-\beta-D-glucopyranose)]^+$, established the molecular formula as $C_{26}H_{34}O_{11}$ for the furanoid diterpene glucoside. The IR spectrum showed characteristic absorptions for hydroxyl groups $(3560-3430~{\rm cm}^{-1})$, a lactone carbonyl $(1715~{\rm cm}^{-1})$, an α,β -unsaturated ester $(1705~{\rm cm}^{-1})$, an tetra-substituted olefinic band $(1675~{\rm cm}^{-1})$ and a furan ring $(3140, 1510, 1130, 880~{\rm cm}^{-1})$, also positive Ehrlich test). The UV spectrum showed the presence of an α,β -unsaturated carbonyl $(\lambda_{\rm max})$

272 nm, ε_{max} 2640). The ¹H NMR assignments are given in Table 1. The signals at δ 7.71 (br s, 1H), 7.68 (br s, 1H) and 6.65 (br s, 1H) were assigned to two α - and one β -protons of a β -substituted furan moiety. An angular methyl group was observed as a singlet at δ 0.92 (3H). A very broad, D₂O

 $R = \beta \cdot D - glucopyranosyl$

 $R = tetra \cdot O - acetyl \cdot \beta \cdot D - glucopyranosyl$

3 R = H

4 R = β -D-glucopyranosyl

5 R = β -D-glucopyranosyl

 $6 R = \beta \cdot D \cdot glucopyranosyl$

exchangeable, singlet at $\delta 4.48$ (4H) was observed and assigned to four hydroxyl protons of a glucose moiety. The signals at $\delta 5.57$ (dd, $J_1 = 12.34$, $J_2 = 3.32$, 1H), 2.17 (dd, $J_1 = 14.51$, $J_2 = 3.84$, overlapped signals) and 1.94 (dd, appears to be t, 1H; from the irradiation experiment, as given below, $J_1 = 14.45$, $J_2 = 12.30$ Hz), were assigned to an 'ABX' system (C-11, C-12) as given in the part structure A. Two very broad singlets at $\delta 4.49$ (1H) and 2.58 (1H) were assigned to protons at C-6 and C-8, respectively. A broad doublet at $\delta 2.64$ (J = 14.59, 1H) and one of the protons at 2.17 (dd, $J_1 = 14.51$, $J_2 = 3.84$, 2H,

Table 1. ¹H NMR spectral data of diterpene glucoside 1 and related compounds (δ)

н	*-	2†	3	4	s.	9
_	1.45 (m, 1H)	1.55 (m, 2H)				
7	1.56 (m, 1H)	1.63 (m, 1H)				
	1.72 (m, 1H)	1.75 (m, 1H)				
3	1.82 (m, 2H)	1.86 (m, 2H)		40.4	6.34	
9	4.49 (br s, 1H)	4.58 (br s, 1H)	3.68-3.81 (m, 1H)	5.02		
r	$2.64 \ (br \ d, \ J = 14.59, \ 1H)$	2.85 (br d, J = 15.19, 1H)				
,	2.17‡ (dd , $J = 14.51$, 3.84 , $1H$)	2.16 (m, 1H)				
œ	2.58 (br s, 1H)	2.44 (m, 1H)		2.78		2.78
10	2.39 (m, 1H)	2.38 (m, 1H)				1.62
He-11	2.17‡ (dd , $J = 14.51$, 3.84 , $1H$)	2.27 (dd, J = 14.68, 3.26, 1H)				
H _a -11	1.94^{+}_{+} (dd, $J = 14.45$, 12.30, 1H)	2.44 (m, 1H)				
H _a -12	5.57 (dd, J = 12.34, 3.32, 1H)	5.45 (dd, J = 12.26, 2.74, 1H)	5.45 (dd, J = 12.26, 2.74, 1H)	5.90	5.49	5.48
14	6.65 (br s, 1H)	6.45 (br s, 1H)	6.57 (br s, 1H)	6.55	6.56	6.65
1.5	7.68 (br s, 1H)	7.43 (br s, 1H)	7.42 (br s, 1H)	7.51	7.65	7.68
16	7.71 (br s, 1H)	7.48 (br s, 1H)	7.48 (br s, 1H)	7.64	7.71	7.75
Me	0.92 (s, 3H)	1.03 (s, 3H)	0.91 (s, 3H)	1.23, 1.12	1.45, 0.85	1.25, 1.05
-COOMe	3.65 (s, 3H)	3.74 (s, 3H)	3.78 (s, 3H)		3.69	
Sugar part						
HO-	4.48 (br s, 4H)					
٦,	4.12 (d, J = 7.89, 1H)	4.60 (d, J = 7.99, 1H)		4.33	4.27	4.59
2,	4.23 (t, J = 5.30, 1H)	5.14 (t, J = 9.50, 1H)				
3,	3.00 (m, 1H)	4.90 (t, J = 8.77, 1H)				
, 4	3.45 (m, 1H)	5.07 (t, J = 9.69, 1H)				
S,	2.83 (m, 1H)	3.66 (m, 1H)				
,9	3.13 (m, 2H)	4.28 (dd, J = 12.24, 4.34, 1H)				
		4.14 (br d, J = 12.20, 1H)				
Me CO		2.10 (s, 3H)				
		2.02 (s, 6H)				
		2.00 (s, 3H)				

^{*}Measured in DMSO-d₆ at 500 MHz. †Measured in CDCl₃ at 500 MHz, TMS as internal standard coupling constant (J) in Hz. ‡Overlapped signals.

overlapped signals) were assigned to protons at C-7. Signal at $\delta 3.65$ (s, 3H) was assigned to the ester methyl group. The signals at $\delta 4.23$ (t, J = 5.30, 1H) and 4.12 (d, J = 7.89, 1H) were assigned to sugar protons at C-2' and C-1', respectively. A multiplet at $\delta 3.45$ (1H) was assigned to a proton at C-4'. The signal at $\delta 3.06$ (m, 3H) was assigned to protons at C-3', C-6'\alpha and C-6'\beta. The signal for C-5'H was observed as a multiplet at $\delta 2.83$ (1H).

The above assignments were confirmed on the basis of 500 MHz ¹H NMR spin-decoupling experiments. On irradiating the signal at δ 5.57 (H-12, X of ABX) the signals at 2.17 and 1.94 (H_e-11 and H_a-11, AB of ABX) collapsed into two doublets ($J_{AB} = 14.45 \text{ Hz}$). Irradiation of the signal at $\delta 2.17$ (H_e-11, B of ABX) caused signals at $\delta 5.57$ and 1.94 (H_a-12 and H_a-11, AX of ABX system) to collapse into two doublets ($J_{AX} = 12.30 \text{ Hz}$). These observations suggested a partial structure A having an axial proton at C-12 and vicinal methylene protons at C-11. It is also interesting to note that the methylene protons at C-11 have long range coupling with protons at C-8, C-7 and C-6. On irradiating the signals at $\delta 2.17$ (H_e-11), the broad singlet at $\delta 2.58$ (H-8) became a broad doublet. When the signal at δ 1.94 (H₂-11) was irradiated the broad signal at $\delta 4.49$ (H-6) changed to a broad doublet and one of the peaks of the broad doublet at δ2.64 (H-7) changed to a broad doublet. These observations suggested a partial structure B.

The noise decoupled and single frequency off-resonance 13 C NMR spectrum contained signals arising from two methyl carbons $(q, \delta 23.32 \text{ and } 51.89)$, six methylene carbons $(t, \delta 18.52, 22.74, 26.98, 28.70, 40.04 \text{ and } 63.45)$, nine methine carbons $(d, \delta 40.00, 49.78, 71.15, 72.14, 72.36, 75.21, 78.56, 78.43 and 102.40)$, four furan carbons $(\delta 109.69 d, 140.83 d, 144.57 d \text{ and } 126.49 s)$, two tetrasubstituted olefinic carbons $(s, \delta 131.17 \text{ and } 144.49)$, one quaternary carbon $(s, \delta 38.68)$, and two carbonyl carbons of an ester and a lactone $(s, \delta 169.45 \text{ and } 171.94)$. These values compared well with the values reported for furanoid diterpene glucosides (Table 2).

Acetylation of compound 1 with acetic anhydride in pyridine at room temperature gave a tetraacetate (2) as colourless needles, mp 171-173°, which indicated the presence of four hydroxyl groups in 1. Acid hydrolysis of 1 with dilute hydrochloric acid in methanol gave D-glucose and an aglycone (3) as a colourless gum which could not be crystallized (TLC single spot). The spectral assignments of these compounds are shown in Tables 1 and 2.

Compound 1 on refluxing with acetic anhydride and dry sodium acetate (under similar conditions in which the inversion of C-8 columbin to isocolumbin acetate was achieved) [11] gave as the only product compound 2. This indicated the B/C ring juncture to be trans [9]. The

high field chemical shift (δ 0.92) observed for the methyl group at C-9, was due to the influence of the furan ring which is on the same side as 9-Me [10]. The β -configuration of the glycosidic linkage of glucopyranose was indicated by the anomeric proton in the ¹H NMR spectrum of 1, at δ 4.12 (d) with the coupling constant 7.89 Hz [9]. The stereochemistry of the C-10 proton was established by irradiation studies. When the signal at δ 2.39 (H-10) was irradiated the splitting pattern of the signal at δ 2.17 (d0 dd0, d0, d1) was changed (could be due to the spacial coupling of H-10 and d1) [2]. This is possible when H-10 is on the same side as d1. Hence the proton at C-10 could be d2-oriented as d3.11 is also d4.

The proposed structure 1 for the furanoid diterpene glucoside clearly satisfied the above spectral data. The mass fragmentation pattern also supported the structure 1. The highest peak observed in the mass spectrum was m/z 343 [M – $O-\beta$ -D-glucopyranose] indicating the immediate loss of a glucose moiety, peaks at m/z 95, 94 and 81 were derived from the furan moiety [2, 4].

EXPERIMENTAL

Mps: uncorr. UV spectra were taken in MeOH. IR spectra were recorded either as nujol mulls or in CHCl₃. ¹H NMR and ¹³C NMR spectra were obtained at 500 MHz with CDCl₃ and (CD₃)₂SO as solvents and TMS as int. standard. Silica gel (100–200 mesh) used for CC was activated by heating at 120° for 4 hr.

Stems of *Tinospora cordifolia* Miers (26 kg) were collected from IIT Campus, Bombay and identified by Mr R. D. Shinde (Blatter Herbarium St. Xavier's College, Bombay). The stems were dried, finely powdered and extracted with CHCl₃ (60 l) in a Soxhlet for 48 hr. CC over silica gel with EtOAc yielded I, as colourless flakes, mp 199–201°. $[\alpha]_{20}^{D0} = +23.8^{\circ}$ (MeOH; c 3.14); IR v_{najel}^{najel} cm $^{-1}$: 3560–3430, 3140, 1715, 1705, 1675, 1510, 1380, 1200, 1130, 880; UV λ_{mex}^{MeOH} nm (ε): 220 (12 896) and 272 (2640); 1 H NMR (500 MHz, DMSO- d_{6}) (Table 1); 13 C NMR (125 MHz, DMSO- d_{6}) (Table 2); MS m/z (rel. int.): 343 [M $-(O-\beta-D-glucopyranose)]^{+}$ (19), 316 (13), 270 (12), 248 (14), 216 (37), 171 (61), 143 (39), 95 (100), 94 (35), 81 (31); Anal. Calcd. for $C_{26}H_{34}O_{11}$: C, 59.77; H, 6.56. Found C, 59.96; H, 6.39%.

Tetraacetate of compound (1). Acetylation of 1 (350 mg) with Ac₂O (3 ml) in pyridine (2 ml) at room temp. for 12 hr gave a tetraacetate (2, 240 mg) as colourless needles (from MeOH), mp 171–173°, $[\alpha]_D^{20} = +47.5^\circ$ (CHCl₃; c 2.52). IR $\nu_{\rm max}^{\rm nujel}$ cm⁻¹: 3140, 1760–1725, 1650, 1510, 1450, 1380, 1230, 1210, 1080, 980, 880. UV $\lambda_{\rm cmax}^{\rm CHCl_3}$ nm (ε): 231.3 (3071). ¹H NMR (500 MHz, CDCl₃): Table 1. ¹³C NMR (125 MHz, CDCl₃): Table 2. MS m/z (rel. int.): 343 (4), 316 (3), 248 (5), 216 (15), 171 (18), 169 (15), 157 (15), 143 (11), 98 (21), 95 (46), 81 (10), 43 (100); Anal. Calcd. for C₃₄H₄₂O₁₅: C, 59.13; H, 6.13. Found: C, 59.27; H, 5.98%.

Acid hydrolysis of compound 1. Compound 1 (100 mg) was stirred with HCl (2 ml) in 50% aq. MeOH (10 ml) for 48 hr, $\rm H_2O$ was added, the ppt. formed was collected and the filtrate concd under red. pres. The ppt. showed several spots on TLC, which on repeated CC and prep. TLC gave a colourless gum (3), which could not be crystallized (TLC single spot). Paper chromatography of the aq. concentrate showed a single spot which was identified as D-glucose on comparison with the authentic sample. For the aglycone (3), IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 3440, 1720, 1710, 1510, 930, 880. UV $\lambda_{\rm max}^{\rm CHCl_3}$ nm: 243.7 and 275. ¹H NMR (500 MHz, CDCl₃): Table 1. MS m/z (rel. int.): 360 [M] ⁺ (2), 342 [M - H₂O] ⁺ (3), 164 (34), 143 (35), 95 (88), 94 (100); Anal. Calcd. for $\rm C_{20}H_{24}O_6$: C, 66.65; H, 6.71. Found: C, 66.58; H, 6.80%.

Table 2. 13 C NMR spectral data (δ values) of diterpene glucoside 1 and related compounds

С	1*	2†	4	5	6
1	18.52 t	17.45 t	17.4 t	28.0 t	69.0 d
2	22.74 t	21.98 t	24.6 t	62.2 d	48.7 d
3	26.98 t	26.25 t	75.6 d	140.2 d	49.6 d
4	144.49 s	143.47 s	79.5 s	137.4 s	85.9 s
5	131.17 s	128.55 s	45.2 s	40.9 s	41.8 s
6	75.21 d	72.85 d	69.8 d	79.0 d	25.5 1
7	28.70 t	27.84 t	27.2 t	26.4 t	16.6 t
8	49.78 d	49.28 d	46.3 d	49.2 d	42.0 d
9	38.68 s	38.19 s	34.3 s	36.5 s	34.8 s
10	$40.00 d\ddagger$	39.13 d	46.1 d	40.4 d	53.5 d
11	40.04 t‡	39.65 t	42.9 t	44.0 t	43,3 t
12	71.15 d	$71.28 d\ddagger$	69.4 d	69.9 d	71.1 d
13	126.49 s	124.78 s	124.2 s	124.5 s	125.3 s
14	109.69 d	108.23 d	108.7 d	109.2 d	109.0 d
15	140.83 d	139.38 d	140.3 d	140.2 d	140.2 d
16	144.57 d	144.99 d	143.5 d	143.7 d	143.7 d
17	171.94 s	171.13 s	172.6 s	174.6 s	172.2 s
18	169.45 s	169.12 s	177.6 s	167.5 s	168.4 s
19	23.32 q	23.38 q	32.6 q	28.4 q	23.7 q
20			17.9 q	22.8 q	17.4 q
-COOMe	51.89 q	51.16 q		51.6 q	** ***
Sugar part	-				
1'	102.40 d	98.99 d	102.4 d	104.6 d	100.0 d
2'	$72.36 d^a$	$70.36 d^{a}$	74.1 d	73.9 d	73.8 d
3′	78.56 d ^b	$72.66 d^{a}$	76.7 d	77.4 d	76.7 d
4′	$72.14 d^{a}$	$68.12 d^{a}$	73.1 d	69.4 d	69.9 d
5'	78.43 d ^b	71.29 d_{+}^{+a}	75.8 d	76.6 d	76.9 d
6'	63.45 t	61.77 t	60.7 t	61.0 t	61.1 t
-COMe		$20.30 \ q \times 4$			
OCO Me	NAMES IN	170.31 s,			
		169.94 s,			
		168.73 s,			
		167.77 s			

^{*}Measured in DMSO-d₆ at 125 MHz.

Acknowledgement—The use of facilities provided by the 500 MHz FT-NMR National Facility at T.I.F.R., Bombay are gratefully acknowledged.

REFERENCES

- Hanuman, J. B., Mishra, A. K. and Sabata, B. K. (1986). J. Chem. Soc., Perkin Trans. I, 1181.
- Hanuman, J. B., Bhatt, R. K. and Sabata, B. K. (1986) Phytochemistry 25, 1677.
- Hanuman, J. B., Bhatt, R. K. and Sabata, B. K. (1988) J. Nat. Prod. 51, 197.
- Bhatt, R. K., Hanuman, J. B. and Sabata, B. K. (1988) Phytochemistry 27, 1212.

- Swaminathan, K., Sinha, U.C., Bhatt, R. K. and Sabata, B. K. (1988) Acta Cryst. C 44, 1421.
- Swaminathan, K., Sinha, U. C., Bhatt, R. K., Sabata, B. K. and Tavale, S. S. (1989) Acta Cryst. C (in press).
- 7. Swaminathan, K., Sinha, U. C., Ramakumar, S., Bhatt, R. K. and Sabata, B. K. (1989) Acta Cryst., C (in press).
- Fukuda, N., Yonemitsu, M.[, Kimura, T., Hachiyama, S., Miyahara, K. and Kawasaki, T. (1985) Chem. Pharm. Bull. 33, 4438.
- Fukuda, N., Yonemitsu, M. and Kimura, T. (1986) Chem. Pharm. Bull. 34, 2868.
- Yonemitsu, M., Fukuda, N., Kimura, T. and Komori, T. (1986) Liebigs Ann. Chem. 1327.
- 11. Feist, K., Rinteln, P. and Kuntz, E. (1935) Ann. 517, 119.

[†]Measured in CDCl₃ at 125 MHz.

Overlapping signals in each column.

^{a,b}These assignments may be reversed in each column.